Tag Archives: agriculture

The toxic gamble: genetically engineered seeds

Farmer harvesting hay in British Columbia, Canada by Betsey CrawfordThe most public debate on the use of genetically modified seeds concerns their safety: whether they are safe for the environment and safe for human consumption. These are crucial questions, arguably the most important. But they are accompanied by a host of other very important issues: democracy, public versus corporate control, the rights of communities and individuals, the control of the food supply, the future of plant genetics, the future itself. Issues of culture, sovereignty, heritage, and spirit are involved. Who we are as inhabitants of our mother planet underlies all these issues.

Genetic manipulations can sound promising: rice with beta-carotene to prevent blindness in vitamin A starved children. Spinach that survives frost. Cotton and potatoes that resist their most pernicious beetle pests. Farming is hard and risky. Anything that makes it easier and more predictable is surely worth a look. Drought resistant wheat? Great idea! Especially in the face of global warming.

It was such a great idea that our ancestors started developing drought-tolerant wheat 10,000 years ago. Cereal grain cultivation originated in the middle east, where there was plenty of reason to foster plants that naturally weathered dry seasons. Grasses are wind pollinated, so the different species could mix easily, blending genes, creating desirable traits that were then chosen, grown, and treasured. Some of these ancient grains are in use around the world today, including in our own midwest, helping farmers cope with the effects of warmer, drier climate.

Teosinte, the ancestor of corn, is pictured with its modern progeny. Photos by Matt Levin and CSKK

Teosinte photo by Matt Lavin; corn photo by CSKK. Both via Flickr/Creative Commons

The choosing and mixing of beneficial traits in plants of all kinds brought us most of the food seeds that we had 100 years ago. Farmers who never heard the words genetics or evolution nevertheless were part of those processes. We know from genetic analysis that corn developed from an unassuming grass, teosinte, when we began planting it nine thousand years ago. Slowly and carefully, operating on knowledge acquired from intimacy with seeds and plants, locale and weather, farmers developed plants with the prominent cobs and seeds that became a staple food of what is now North and South America. The other two staples — beans and squash — were developed with the same patient wisdom.

The indigenous people of the Americas planted their three sisters together, starting with a few corn seeds set into a mound of soil. The corn stalks created a pole for the bean vines to climb. Beans are in the legume family, which pulls the crucial nutrient nitrogen from the air into the soil. The large squash leaves shaded the ground, discouraging weeds, conserving water and preventing the sun from baking the soil. Coastal tribes planted a fish in each mound for fertilizer. 

A bowl of jewel-like beans from seedambassadors.org

Photo from Seed Ambassadors

One hundred years ago, after thousands of years of such careful nurture and thoughtful husbandry, there were 307 varieties of commercially available corn seeds. As of the last count in 1983, there were twelve. Monsanto is everyone’s culprit, with good reason, but they didn’t begin it, and they’re not alone. Early in the twentieth-century corporations realized that there was money to be made in creating seeds that had to be bought anew each year, instead of the ancient practice of collecting them at harvest. This led to F1 hybrids, which dominated farm staples such as corn, sugar beets and vegetables. F1 hybrids are genetic crosses designed to use the desirable dominant traits of each parent. However, in the next generation recessive genes can activate, and so the crop is less predictable and likely weaker. 

So, farmers purchased new seeds every year, on the surface a reasonable tradeoff for a reliably hardy crop. But only reasonable if they had a choice, which diminished rapidly. The hybrid breeders didn’t want competition from traditional seeds, so they began to buy up seed companies, something that has accelerated in the last twenty years. The three major chemical corporations heavily involved in GMO seeds have bought 20,000 seed companies among them. In addition, Monsanto is notorious for going into traditional farming regions and buying stored seeds from farmers as they introduce their altered seeds. By refusing to sell the traditional seeds they now own, corporations force farmers to buy their genetically engineered products.

Wheat field in South Dakota by Betsey Crawford

Wheat field in South Dakota

When they want to convince the public of the safety of GMO foods, genetic modifiers say that their work is a continuation and sophistication of the process of hybridization that has been in place since farming began. But all previous combinations, including the F1 hybrids, combined genes of the same or closely related species, using the methods of pollination the plants had used for millions of years. The insertion of flounder and trout genes in tomatoes and spinach, along with viral catalysts and a bacterial signature to identify the corporate owner, is entirely new. Which is exactly what those same modifiers say when they apply for patents.

In 1980 the United State Supreme Court ruled that life forms could be patented. This gives Monsanto and other companies the right to alter a single gene in a seed, claim the patent, and sue anyone who uses that seed for intellectual property theft, even if the use of that seed is unsought and unwanted. There are many examples of farmers whose crops were wind pollinated by nearby GMO seeds and ended up being sued for damages. In addition, and literally caught in the crosswinds, organic farmers can lose tens of thousands of dollars of value when their crops are contaminated.

Given its 117 year history of producing deadly poisons — DDT, Agent Orange, PCBs — and creating endless toxic sites, there is apparently no amount of damage that Monsanto is unwilling to do. It has also, ever since helping make bombs in both world wars, had close ties to the U.S. government. In every administration from Reagan through Trump, Monsanto lawyers and executives have held positions in the FDA, the USDA, and the Supreme Court. Next to the corporations, the U.S. government is the biggest booster of GMO crops, even to the point, during famines, of forcing supplies of GMO grain on African countries that don’t want them.

Corn field in western Kansas by Betsey CrawfordI can’t know for sure how the farmer of the field above treats his land. But the state of the soil — dry, sandy, colorless — suggests that he first drenched the ground with biocides to kill the microbial life. Then another biocide to arm the seeds and seedlings against insects whose predators may well have been killed in the first round. Since there are no weeds sprouting between the corn stalks, he likely applied another biocide, probably glyphosate, to kill them. This is the chemical in Monsanto’s Round Up. Handily, Monsanto’s Round Up Ready seeds are bred to grow into plants that aren’t killed by glyphosate. After seeding the farmer can keep spraying Round Up all season. To feed the plants growing in this sterile soil, repeated applications of petroleum-based fertilizer can be added to the list.

If this were a potato field, he would have followed the same path, adding fungicides, but instead used the eyes of potatoes with the inserted genes of Bacillus thuringensis, or BT. Eating the leaves would then be lethal to the notorious potato beetle. These thrive in monocultures of the potato bred, for example, to provide perfect french fries at McDonald’s. This leaves us with sterile soil, sick pollinators, poisons in the air and water, eating a potato that is, under the Environmental Protection Agency’s rules, technically an insecticide.

In 1903 there were 408 varieties of tomatoes available from seed companies. By 1983 it was 78.

In 1903 there were 408 varieties of tomatoes available from seed companies. By 1983 it was 78. Photo by Immo Wegmann via Unsplash.

Earlier this year Monsanto merged with German chemical giant, Bayer, another company with a grim history. They join two other recent mergers: Dow and Dupont, Syngenta and Chem-China. These are chemical companies foremost, and what they want to sell are chemicals and seeds modified to grow into plants that can sustain repeated barrages of their chemicals. Journalist Mark Shapiro, in his book Seeds of Resistance, quotes a Monsanto executive who describes the ’stacking’ of as many as six different genes into a seed to create resistance to six different pesticides. “We work,” she said blandly, “to uncouple the farm from the environment around it.”

As Shapiro says, this is “a pretty succinct description of the industrial agriculture paradigm…that treats the seed as a foreign entity to be inserted into a chemically reconstituted environment.” It’s also insanity: trying to create life by killing everything around it. A thriving earth means one lively ecological niche after another. A seed and its environment are among the most crucially linked life forms on the planet; they are an ecosystem, intimate bonds that hundreds of millions of years of evolution, of both seed and soil, have created. Every breathing being on the planet has evolved because this relationship evolved first: a soil alive with microbial and fungal life, a brilliant seed, and the plant they produce. 

Soil should be full of life: dark, crumbly, full of decaying plant matter and fungi.

Soil should be full of life: dark and crumbly because it has lots of decaying plant matter, showing signs that fungi are thriving.  Photo by Sam Jotham Sutharson via Unsplash.

Evolution is going to have its way. There are already superweeds that survive Round Up. BT, an important tool used sparingly in organic farming, quickly met its first BT resistant caterpillar in genetically engineered cotton. The companies will invent more chemicals. The organic farmers will be devastated. Thus it isn’t only about safety. There are layers and layers of complications. Pollution, health, farmers’ sovereignty over their own land. The ability to access and trust good science, and the education to understand it. A community’s right to say no to corporate demands. State and federal laws protecting corporations at the expense of those communities.

People assume there have been studies on the safety of GMOs for humans. But there haven’t been. Negative research exists but has been suppressed and ridiculed. The chemical companies say it’s not their business to determine the safety of their products, it’s the Food and Drug Administration’s job. The FDA is peppered with biotech industry insiders. One Monsanto executive went from writing the paper to gain approval for bovine growth hormone to being the FDA appointee who approved it. 

Will there be a safe role for transgenic organisms in medicine and food? We don’t know. It’s being ‘studied’ in real time. We, along with our children and grandchildren, are the long-term epidemiological experiment that may give us the answer. We may not know for generations. The same is true of the environment. There have been recent articles by one-time GMO skeptics who say they are now converts since we’ve been using them since 1994 and they “seem safe.” But twenty-four years doesn’t even register in the scale of human and plant evolution. If every word in this essay represents 500,000 of the one billion years since the first photosynthesizing eukaryotes showed up, homo sapiens’ 200,000-year history would be the last two letters. 

In 1903 there were 463 varieties of radishes available from seed companies. By 1983 it was 27.

In 1903 there were 463 varieties of radishes available from seed companies. By 1983 it was 27. Photo by Lance Grandahl via Unsplash.

Monsanto’s slogan is ‘Feeding the World.’ Well-meaning people and organizations believe genetically engineered seeds are the answer to the seemingly intractable problem of hunger, especially as the population explodes to a projected 10 billion people. But recent studies show that the combination of genetically engineered seeds and their companion chemicals actually produce lower yields than traditional methods. In the meantime, debt-burdened farmers the world over are trapped into a cycle of needing chemicals to produce high yields to pay for the chemicals. The companies and their stockholders are the only identifiable beneficiaries. 

People aren’t hungry because there aren’t enough vast agricultural monocultures being showered with poison. They’re hungry because our methods of growing and distributing food leave them out. The farm workers in California’s Central Valley work among the most abundant vegetable and fruit fields in the world. But they can’t afford the products they raise because they’re not paid enough, a worldwide problem.

We know so little, despite our brilliance. We’ve been here such a short time. The seeds we’re risking for the profits of a few people are our elders by hundreds of millions of years. We’re a young and rambunctious species, dazzled by our capabilities. But we have no idea what we don’t know. Too many have lost a once deep understanding that we are embedded in a vast fabric of being. Lost the knowledge, to borrow from Thomas Berry, that the earth is not made of objects, but interconnected subjects full of life, power, and wisdom. To the Mayans, corn was a goddess. Among those who remember such reverence, there’s a growing movement to save seeds. That’s what I will celebrate in the third part of this seed series.

A farm field on Prince Edward Island, Canada by Betsey Crawford

Prince Edward Island, Canada

I’d love to have you on the journey! If you add your email address, I’ll send you notices of new adventures.

Related posts:

The brilliance of seeds

Micro images of seeds by Alexander KlepnevThese gorgeous seeds and their vast number of relations are the foundation of life. Certainly for the plants that grow from them. And for the entire animal kingdom, which is completely dependent on them for food. Herbivores eat their plants and the seeds themselves. Carnivores eat animals that eat plants. We human animals have a special relationship with seeds. First, as eaters. If you had oatmeal or toast for breakfast you ate crushed seeds. Coffee? Ground seeds containing the energizing alkaloid caffeine, which creates a mild addiction we share with bees. Raspberry jam? Fruit containing seeds. Hummus for lunch? Crushed protein-rich seeds from legumes. Walnuts for a mid-afternoon snack? Seeds themselves, packed with nutritious oil. Some chocolate with that? Seeds filled with luscious fat. String beans for dinner? Pods containing ripening seeds. Spicy salsa on the side? That the heat of capsaicin-containing pepper seeds.

Vivid peppers at the San Rafael farmers market, San Rafael, California by Betsey CrawfordOur whole life is one seed after another. But that doesn’t separate us from our non-human kin. What distinguishes us is that we consciously plant them, and the discovery that we could do that changed everything. Once we found out how to create a reliable source of food by cooperating with seeds, we changed from hunter-gatherer nomads to settled communities. We were launched on a revolution we are still living today. Our 10,000-year history with seeds, and what has happened to this most interdependent of relationships in the last hundred years will be part two of this essay. In part one, I want to celebrate their brilliance.

Here are some of the things that seeds know: they know that the twelve hours of daylight in early April in the northern hemisphere means it’s time to germinate, whereas the twelve hours of daylight in late September means it’s time to disperse themselves away from their mother plant. They know it’s the opposite in the southern hemisphere. 

Fireweed (Chamaenerion angustifolia) seeds splitting out of their red pods in Stewart, Alaska by Betsey Crawford

As the ripe pods of fireweed (Chamaenerion angustifolia) split open, they curve away from the center, pulling tiny seeds with them, ready to be airborne.

Having waited in dormancy all winter, metabolism slowed almost to a halt, embryo protected inside a hard shell, they know how to measure the right mix of light, water, and oxygen. They know a passing shower is not the rainy season they’re waiting for. They know the forest they’ve lain dormant in for decades has burned and nutritious ash and volatile organic compounds have been made available, along with enough light to sprout and grow. When a drought ends, or a road is cut through, or a field plowed seeds know to grab their chance in the sun and air, take in water, begin to expand their cells, and wake up their sleepy metabolism.

They know to send out a tiny root that will find its way into the soil by the gravity sensors in its tip. They know their place well enough that many seeds can confidently do this in the fall to get a head start on the next spring’s growth. Many others know to resist the temptation of germinating in warm autumn soils and thus risk the winter freeze. Those wisely wait until spring. Seeds sense where they are, how deeply they are buried, whether the minerals, bacteria, and fungi they need are available. Some seeds wait years, even centuries, for the right moment.

The seeds of grasses are full of energizing starches that provide half the world's calories. Photo by Betsey CrawfordThey know to send out one or two ‘first leaves’, cotyledons, to begin the work of photosynthesis, adding to the nutrients in the seed itself. Long before that they know to take one of the two sperm that makes it into the ovary as a result of pollination and make nutritious food out of it, usually the endosperm. Until photosynthesis starts, that’s what nourishes the embryo and seedling. And us: the endosperm of grains accounts for over 50% of human caloric intake worldwide

In the long process of evolution, they have created a variety of endosperms and related ways to nourish themselves. Fat-filled avocado seeds have plenty of food for the slow time it takes them to start photosynthesizing in their native forests. The starchy seeds of grains and grasses give them the quick energy they need to take off in any open, sunny spot. Protein-rich nuts drive the long lead time it takes to launch a tree, and promise nourishment to the animals who handily spread them around and then forget where they put them. 

Common milkweed (Asclepias syriaca) seeds ready to take off by Betsey Crawford

The wonderfully fluffy and prolific seeds of common mllkweed (Asclepias syriaca)

They’ve worked out arrangements with pollinators and predators. Hard shells protect against rodents eating too quickly. They carry the heavy nuts — and often bury them — away from the mother plant, enabling young plants to better establish themselves. Seeds create alkaloids like piperine in black pepper, terpenes in citrus fruits, capsaicin in hot peppers to make themselves too unpleasant to eat. Then they work out further deals. Birds, who don’t mind the heat of capsaicin, but whose digestive systems are slowed down by it, thus carry the seeds farther abroad, handily depositing them in a small package of fertilizer.

After a summer of ripening, they take off on wings, feathery filaments, parachutes. They hitch a ride on animals, including humans. They drop at the feet of their parents to form colonies. The pods of lupines and other legumes pop open and shoot seeds away from the mother plant. Seeds can ride ocean currents for thousands of miles to establish themselves on far-off lands. Many know to ripen alongside the flesh they are encased in, which changes from protective bitterness to such sweetness that more and more dispersers are lured to them. Birds, bats, bears, monkeys happily spread apples, cherries, peaches, blueberries far and wide. Humans take fruit seeds and plant them in orchards. Dispersal to a good place for eventual germination is crucial to the survival and evolution of a species. Seeds know how to enlist the help they need, even from the tiniest creatures.

An ant carries seeds in the Anza Borrego Desert in photo by Betsey CrawfordThis varied and amazing wisdom has inspired 90% of plants to evolve the use of these protective, easily dispersed packages of nutrition, embryo, and intelligence to ensure the viability of the next generation. Of those, 80% are angiosperms, from the Greek for ‘seeds in a receptacle.’ The remaining seed producers are gymnosperms (‘naked seeds’) which predate angiosperms by 160 million years. They lack the protective seed coat of the angiosperms, important protection during dormancy. However, many of the gymnosperms, including all of the conifers, have evolved cones as a way to protect their seeds. 

White spruce (Picea blanca) cones protect their seeds. Photo by Betsey CrawfordGymnosperms, among our most ancient plants, are far less diverse than the angiosperms. Try parking your car near a pine grove on a windy spring day. Pines are pollinated by very fine, yellow pollen carried by the wind in fluffy clouds. Many angiosperms, especially grasses, rely on wind pollination, and it works wonderfully. But it’s a scattershot approach to reaching the precise spot you want fertilized, as you’ll see when you get back to your now yellow car. By tucking the egg deeply into the protection of the ovary, angiosperms created conditions for a multitude of goal-oriented pollinators: bees, butterflies, beetles, bats, moths, flies among them. This led to competition for the attention of these creatures, which in turn evolved into a large variety of shapes, petals, sizes, colors, scents, seeds themselves. 

The underside of a fern dotted heavily with spores. Photo by Betsey Crawford

Clusters of ripening spores on the underside of a fern leaf.

This explosion of diversity is possible because seeds efficiently combine the genes of two parents. Ferns mix them, too, via spores. But they use an ancient process so cumbersome that ferns are basically the same plant they were 180 million years ago. Seeds allow for evolution itself: the easy and continual mixing of the gene pool creates an endless array of subtle variations that allow plants to adapt to changes in the landscape, in pollinators, in temperature, in pests. Combining parental genes allows one species of wheat to become more drought tolerant than another, a flower to form purple petals from pink, a potato to better resist fungus.

How these multitalented beings do all this remains full of mysteries, though we have clues. Can seeds see light? Perhaps not the way we can, but they definitely see light and judge its strength and direction. Like us, they possess sensors and chemicals to allow this skill. Phytochrome enables seeds to register light energy, or the lack of it, at the red and far-red end of the spectrum. They judge the season by the length of the night, yet know if darkness comes from overhanging foliage because light filtering through green leaves switches from red to far red. Seeds also rely on knowing the temperature and moisture suitable for their species to judge when it’s time for the seedling to emerge. At that point, phytochrome switches gears, fostering growth and the increasing complexity of the emerging plant. 

The seeds of foxtail grass (Hordeum jubatum) bring to break off from their stalk. Photo by Betsey Crawford

Seeds of foxtail grass (Hordeum jubatum) break away from their stalk.

Are seeds conscious? Not, so far as we know, the way we are, but they are keenly aware of and responsive to their surroundings. They make choices and decisions. One can say it’s a chemically-mediated response to stimuli, but that’s how our brains work, too. I doubt the seeds lying in wait in the brown hills surrounding me are ruing the exciting days of last spring, or planning for the coming rainy season. That kind of consciousness seems to be our unenviable lot. Instead, they have a way of holding the spring that launched them and trusting the rains to come that I would love to emulate.

Those dry, dozing seeds have their own type of awareness. More important, they, like all of creation, hold the consciousness of the whole. The same wildly creative, ardent energy that brought the universe into being flows through every seed, every plant it forms, every creature it nourishes. It flows through us as we spend our days sipping and munching them, or planting a flower garden, or sowing corn to be sure we can feed our families.

Western columbine (Aquilegia occidentals) seeds ready to drop to the ground. Photo by Betsey Crawford

The heavy seeds of western columbine (Aquilegia occidentals) will fall close to home.

As long as we treasure them, does it matter whether we think seeds have any kind of consciousness? The trouble is, too few people are treasuring them. By not regarding them as the vibrant, sacred trust that millions of years of cosmic evolution have bequeathed us, we’ve lost 90% of their vast diversity in the last hundred years. We’re stopping evolution in its tracks. That’s not just losing access to nourishment, which is devastating enough. It’s losing culture, history, connection, spirit. Far from treasuring them, we have given control of seeds to corporations whose only mission is profit at any cost. And the cost is unbearable.

Currently, seeds are treated as a commodity to be bought, traded, used, changed, profited from. That mindset will be explored in the second part of this series. If, instead, more and more of us see ourselves sharing with seeds the same co-evolved energy and wisdom that have made us partners for millennia, we will help prevent their destruction. There are many passionate people on this journey. Their hope and work will inspire part three of this essay.
Seeds in autumn in Meadows in the Sky in Revelstoke National Park, Revelstoke, British Columbia by Betsey Crawford

I’d love to have you on the journey! If you add your email address, I’ll send you notices of new adventures.

[Top photo: Micro images of seeds. Photo by Alexander Klepnev via Creative Commons]

Related posts:

 

Project Drawdown: reversing global warming

For Project Drawdown: a refrigerator full of food illustrates how many solutions an everyday appliance involves. Photo by Betsey CrawfordThis photo of my refrigerator, filled with its usual groceries, though much more attractively arranged than usual, represents some of the best and most exciting news I’ve ever heard. It goes back to a question environmentalist Paul Hawken posed: what can we do to reverse global warming? The standard research is devoted to ways to slow it down. But, Paul reasoned, if you’re on the wrong road, what’s the point of just slowing down? When he found that no one could answer his question, he began assembling a team to spearhead the research themselves. Project Drawdown expanded into a worldwide coalition of scientists and other experts who started gathering data and designing the system to analyze it. They came up with eighty things we can do today, and twenty that are still in the design stage. There were jaw-dropping surprises.

At bottom, there are only two things you can do with the excess airborne carbon and the other related chemicals causing global warming: prevent their emissions or sequester them. Sequestering means pulling carbon from the air into the ground. To prevent emissions, we need to rethink many of the ways we conduct the business of agriculture, land use, waste management, transportation, energy production, and building. Project Drawdown addresses all of this.

The solutions are ranked from one to one hundred, in order of the amount of atmospheric carbon each reduces or prevents. Costs and savings are measured against estimates for business as usual for the next thirty years. They aren’t ranked in the order of importance, because they are all crucial steps that need to be taken. And they upend a lot of presuppositions. After all, who knew? No one was asking.

Educating girls and providing access to birth control would be the number one Project Drawdown solution if combined. They are numbers 5 and 6. Photo by Les Anderson via Unsplash.

Educating girls and providing access to birth control would be the number one solution if combined. They are numbers 5 and 6. Photo by Les Anderson via Unsplash.

I would suspect most of us would think transportation — cars, trucks, airplanes, shipping — would rank among the top ten. Not at all. They start in the thirties. To everyone’s amazement, refrigerant management was number one. “We were so disappointed,” Paul says. “So unsexy!” Which could also be said of reducing food waste, coming in at number three. Another huge surprise was that educating girls and providing widespread access to family planning are numbers five and six, and would be number one if combined. There are sixteen solutions that pertain to food. Together, especially if you add in transport, they would dwarf the rest in the amount of carbon reduced.

Which brings us back to my refrigerator. A plant-rich diet is #4. Managed grazing (milk, eggs) is #19. Indigenous land use and tropical forests (shade grown coffee, fair trade chocolate, heritage grains like quinoa) are #39 and #5.  Growing food among trees shows up in four solutions. New approaches to rice farming cover two. In fact, this refrigerator connects so many solutions, I made a map: 

What we do with our refrigerators involves 36 Project Drawdown solutions. Graphic by Betsey CrawfordThirty-six solutions, almost half of the eighty available today, are involved simply by our possession of a common household item and what we put in it. What we eat, how we grow our food, how we transport it, whether or not we waste it. How we power our refrigerator, how we get rid of it when it no longer works. The plastic we use when we buy our groceries. Whether we recycle and compost. Whether our population will outpace our ability to care for it. Our relationship with our refrigerator is so important that the top ten solutions, marked by the small hot pink ovals, are all there.

All these interconnections in something so simple and common represent one of the things that I love about Project Drawdown. The solutions aren’t complex and esoteric. They are all within our reach and some, like solar and wind power, are well underway. In fact, all of them are happening to some extent somewhere in the world. That was one of the guiding principles behind the research: what’s happening now? What do we already know? Scaling up is a doable challenge. Convincing ourselves, our representatives and the companies we deal with to move in these directions is a more complex challenge.

Onshore wind farms are the number two Project Drawdown solution. Photo by Betsey Crawford

Onshore wind turbines like these in southern California are the #2 solution, offshore is #22.

The Pachamama Alliance and Project Drawdown are teaming up to create a network of communities to spread the word. In March, I finished a five-session course given by the Alliance. Like the Drawdown website and book, the course was beautifully done and full of enthusiasm. I was delighted to find that things that make my eyes glaze over, like refrigerant management and green cement, fire other people up. Being a plant person, I immediately gravitated to agricultural and land use issues. But they all connect in so many ways that every solution will eventually meet at one intersection or another.

The passionate excitement around the project is a huge blessing. According to Per Espen Stoknes, a Norwegian psychologist and economist, thirty years of scary, hard-to-fathom scientific evidence for climate disruption have actually driven people to lose the interest and faith many had in the 1980s and 90s. People feel helpless and resistant when faced with apocalyptic framing. It’s important to know that installing solar panels, supporting organic farmers, especially local ones, buying LED lights, composting and recycling are all important things every one of us can do. Promoting causes like educating girls, saving forests, and preserving indigenous land really makes a difference.

Women grow 70% of the food worldwide, mostly on small farms. But women smallholders don't have the same access to resources and rights. With that access, their yield would rise by up to 30%, limiting the drive for deforestation for more land. Photo by Annie Sprat.

Women grow 70% of the food worldwide, mostly on small farms. But women smallholders (solution #62) don’t have the same access to resources and rights as men do. With that access, their yield would rise by up to 30%, limiting the drive for deforestation for more land. Photo by Annie Sprat via Unsplash.

These solutions are also important social justice issues and therein lie more connections. As we rethink the way we operate in the present, for the sake of the future, we will redress very profound injuries done to the earth and many of its people: the abrogation of rights, lands, and cultures; the dumping of toxic waste, especially in poor areas; the contamination of air, water and soil; the decimation of forests and wetlands; the sky-rocketing extinction of species. 

A wonderful bonus of all these interconnections is that we can all find something that matters to us, and in helping further one cause, help further many more. We literally have a ready-made to-do list. In our class of sixteen, each of us chose a solution to pursue, and none overlapped. One man is taking a green cement proposal to his local school district, which has a building plan in the works. A chef is working with a landscape designer on a concept called agrihoods. One woman is pursuing tropical forests and regenerative agriculture. Another is planning to raise money for girls’ education. One of my plans is to pursue the various threads involving trees. I’m also planning to keep in touch with John about agrihoods, explore local farms with Justine, and donate money to the organization Ruth sets up. This is the profound blessing of gathering in community, which is central to the mission of the Pachamama Alliance.

Managed grazing is Project Drawdown solution #19. Here portable chicken coops are moved to an area recently grazed by cows. Photo by Betsey Crawford.

Managed grazing is #19. Here portable chicken coops (solar powered!) are moved to an area recently grazed by cows whose pats attract bugs for the chickens to eat. The chickens are mostly uninterested in grass, so it has a chance to regrow after the cow’s recent grazing. Both fertilize the soil.

I’ve been a fan of Paul Hawken since I bought the perfect shovel from the Smith and Hawken catalog thirty years ago. He was a pioneering green entrepreneur, and I admired what he was trying to do with his business. His research into the millions of organizations worldwide working to save the planet has consoled and inspired me for a decade. He’s well known in the environmental and green business world, but he heads no large, clout-bearing organization. The first Drawdown office was the Zoom internet conference app. 

A tiny team with a tiny amount of money sent out word to academics the world over to see if anyone was interested in the project. They were inundated with responses and chose seventy highly trained Project Drawdown fellows from twenty-two countries who will continue to explore and refine their projections. As the information started to come in, they expanded the community with a 128-member Advisory Board to review it, so the science behind the recommendations would be impeccable. 

Preserving and restoring forests are major Project Drawdown land use solutions. Here is preserved forest at the Wynn Nature Center in Homer, Alaska. Photo by Betsey Crawford

Preserving and restoring forests are major land use solutions. This regenerating forest is in the Wynn Nature Center in Homer, Alaska

I usually do my best not to keep using the same word over and over, but I find, despite dozens of suggestions in the thesaurus, that there is no adequate substitute for community, an excellent metaphor for life in general. One man with a question no one else is asking becomes a small community. They reach out and add seventy more. Soon over two hundred people are involved. Other whole communities — organizations like the Pachamama Alliance, businesses, universities, governing bodies — come on board and their members reach out to create communities. That’s exactly what I’m doing now, hoping you will bring the news to your communities. Together we can transform an existential crisis into an opportunity to reimagine how we want to preserve and share the beauties and bounties of the earth.

Genesis Farm in Blairstown, New Jersey is full of Project Drawdown solutions, including the array of solar panels in the lower right. Photo by Betsey Crawford


Genesis Farm in Blairstown, New Jersey is full of Drawdown solutions, starting with the array of solar panels in the lower right. Others include organic farming, forest preservation, recycling, water saving, plant-rich diet and composting.

I’d love to have you on the journey! If you add your email address, I’ll send you notices of new adventures.

Related posts: